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of Numerical Analysis 

By P. Wynn 

1. Introduction. It is the purpose of this paper to describe a non-linear technique 
which appears to have powerful and general application in numerical analysis. 
However, before doing so it is necessary to refer to a few related theoretical con- 
cepts. 

2. Rational Operational Formulas. The double sequence of rational functions 

U,.,,(x) 

V..,(x) # 

where 

U____(x_ a,0,,,0 + a,,,,P, X + + a,,p, x 

~~~~V,.,(x) go ,V, 0 + Iyw, X + ***+ Ayw#X' 

may be derived from the series 
00 

(2) :(x) =E csxf 8 0_ 

by imposing the condition that the power series expansion of (1) should agree 
with (2) as far as the term in x+'. If none of the Hankel determinants 

Cm Cm+i * ' * Cm+k-1 

Cm+i C00+2 .. Cm+k 
ml,k-1 0,1,** 

Cm+k-1 Cm+k Cm+2k-2 

vanish, and the additional condition ,3,,,o = 1 is imposed, the coefficients in the 
rational expression (1) are uniquely determined. The rational expressions (1) may 
be placed in a two-dimensional array in which the quotient (1) occurs at the inter- 
section of the (At + 1)th row and the (; + 1)th column. [1] [2] [3]. 

As is well known, the numerical convergence of the sequence 

Ur,r(X) (3) 6'V(x) r = 0, 1, 

for a particular value of x is in many cases much better than that of the series (2). 
This consideration led Kopal [4] to the consideration of rational operational forma- 
las, that is, to the replacement of the operational equation 

(4) c' d) F = f 

where F is a known function from which f is to be determined, and d is a finite dis- 
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placement operator, by the equation 

(5) (urA(d) F = f 

Equation (5) cannot at the moment, in its non-linear form, be solved. The equation 
may however be linearized by multiplication throughout by Vr,r(d) to give 

(6) E r (d)F = I'rr(d)f 

Assunming that F and f are completely known, that r in equation (6) is sufficiently 
large, anid the example is a suitable one, then there will exist considerable numerical 
agreement between the right and left hand sides of equation (6). Assuming that d is 
any one of the conventional operators A, E, V, ,, 6 of numerical analysis, and that 
F and the sequences of values fi , f2, - ; fI , f_2, - are known, then equation 
(6) may be rearranged so as to determine fo . It is this very last assumption which 
constitutes a serious limitation of the linearizing technique resulting in equation 
(6). Indeed, Kopal was only able to find useful application of the technique when 
d was the backward difference operator, though his numerical results, which related 
to the forward integration of a differential equation, appeared to be very promising. 
HowAsever, the same effect over a very much larger range of problems may be achieved 
by recourse to another method. 

3. The em(Sn) Transformation. In his researches ilnto the non-linear trans- 
formation* 

Sn Sn+, ... Sn+m 

AS, ASn+j * . ASn+m 

(7a ) emGSn) - ASn+m-1 ASn+m ... ASn+2m-1 r r& = 0, 1, 
1 

S,1 
... 

1 
| ASn A\Sn?1 *** ASn+m 

ASn+m-1 ASn+m ... ASn+2m-1 

of the sequence ST, r =, 1, * Shanks [5], by an appeal to the theory of linear 
equations, showed that if 

(8) Sr= >C'X, Ol *-- 
s-0 

then 

(9) em (Sn)() m, n = 0, 1, .... Vm ,m+n(X)II 

The same result may be derived from the theory of orthogonal polynomials [6]. 

4. The e.-Algorithm. The evaluation of the determinants in the various expres- 
sions (7) is sufficiently laborious to be prohibitive. However, the expressions (7) 

* The notation used here is consistent with that of [71 but differs slightly from that of 
[51 where the right hand side of (7) would be designated as em(Sn?m). 
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may be computed recursively by means of the E-Algorithm as follows [7]. If, from 
the initial conditions 

(10) )=0 m = 1,2,*; o Sm m = , l, 

quantities etm) are computed recursively using the relation 

(11) (in) 
= 

(m+l)+ I,+ m 
m, s = 

,1 *** E..i+ m1 i)0,1 
(e -E , 

then 

(12) e28+1 = tes(ASM)V' C28 = e8(Sm) m, s = 0, 1, 

If the quantities ((m) are arranged in the scheme 
(0) 

(1) (0) 

(1) 
eo 

(2) (1) (0) 

(2) (0) 
eo *s+l 

() ((2) * (1) 

(3) *(1) 
E0 * +1 

. * (2) 

(2) 
Cs+l 

it will be seen that relations (11) may be used, column by column, to build up the 
scheme from left to right. It should be nloted that if conformity, by means of equa- 
tions (9) and (12), is to take place between the Pad6 Table and the e-array, the 
latter must be transposed about the diagonal m = 0; the columns of the e-array 
with even order suffixes then take their place as rows in the Pad6 Table. 

The followving theorem, based upon the results of the last two sections, may now 
be given: 

THEOREM. If p is an associative and commutative operator, and 

(13) a8p8F = c8x' s-0,I, 

and quantities E8 are computed using the relation (11) from the initial values 

(14) f.1. - 0 mn = 1,2, ; Em - :a8p$F 
s-o 

then 

(n (J,m+s(X) 

(15) E2. = ~~~~~~. 8'+.R() in ,1 

FIRST EXAMPLE: A numerical example of the application of the theorem niow 

follows. It conceriis the process of obtaining the derivative at Z = 0 of the function 
exp(hz), when h = 0.6), by meanis of the forrmula 

(16) F = E (-1) aI+'F 
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Here, in the notation of equation (13) 

(17 (-,)S 'A~S+lF 
= - e' h 

(17 ) (s+ 1) s+ _(s+ 1) (e - 1)8+1. 

The quantities with evsen order suiffix in the e-array for this example are displayed 
in Table I. 

Note: The results of Table I begin with the diagonal n = 1. If the notatioln of 
equation (15) is strictly to be adhered to, aln entry e( = 0 together with a corre- 
spondinig diagonal should be appenided to Table I. However, this is not a matter of 
great importance, anid in the event that an operational series were to begin with a 
term in pS, s > 1, even this artifice would not be available. 

It is perhaps in order to comment upon the power of the algorithm as revealed 
by this example. Attailnment of the same accuracy as is achieved in Table I by 
the straightforward use of the series (16), even neglecting the accumulation of 
round-off errors, would involve the summation of about eighty terms and an excur- 
sion inito arithmetic involving twenty-eight decimal figures. 

The Pade quotients (3) in this example are stuecessive convergents of the con- 
tinued fraction 

II lX12x 2 2x 22X 
(18) x-l log (I + x) = 1 1 x 1 x 2 22x 

Numerical investigation into the behavior of this continued fraction [8] shows that 
application of the e-algorithm to the series (16) conlverges quite reasonably for 
(e hz- 1) > 1, wheni the series rapidly diverges. 

In the derivation of the classical operational formulas of numerical analysis 
the operand is assumed to be a polynomial, and the formulas derived are then 
completely valid. The formulas are then universally applied, without examination 
of the operand, and without any more justification than that of the results achieved. 

In the same way it occurs that although formula (13) is no longer valid, use of 
the e-algorithm in conjunction with operational series meets with success. Two 
examples which stupport this thesis n-tow follow. 

SECOND EXAMPLE: This concerns the interpolation of the function log (0.6 + hz) 
wN-hei-n h = 0.1 and, z 0.25 wvith points of tabulation at unit initervals of z, by use 

TABLE I 

0.8221 1880 
0.4841 7914 0.6038 2270 
0.6693 9684 0.5a987 5229 0.6000 7869 
0.-5551 9362 0.600.5 0406 0.5999 7937 0.6000 0168 
0.6303 0451 0.5997 6720 0.6000 0665 0. 999 9961 0.6000 0004 
0.5788 4612 0.6001 1785 0.5999 9752 0. 6000 0011 0. 999 9999 0.6000 0000 
0. 151 0747 0.5999 3622 0.6000 0102 0. 5999' 9996 06000 0000 
0.5890 2272 0.6000 3631 0.5999 9954 0.6000 0001 
0.6080 8473 0.5999 7849 0.6000 0022 
0.5939 8062 0.6000 1316 
0.6045 2176 
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of Bessel's Interpolation Formula 

(19) F(z) = a,FF(0) 
.-o 

where 

aO = 1 a, = z6E"'2 

a = (2 +2s 1) p,62'EI/2 
(20)/ - 

(2+I = Z-_L (2 +8 S-1 5+lE1128 = hS 
=2s + 1 \ 

s 
/2 

The quantities e(^) with even order suffix are displayed in Table II. 
Since log(0.625) = -0.4700 036, it will be seen that application of the e-algorithm 

results in an effective gain of three decimal figures. This is not spectacular, but 
there is no point in selecting for presentation only those examples which display 
the method in a particularly favorable light. It might be mentioned at this point 
that the author has experimented with the e-algorithm in conjunction with opera- 
tional formulas in a large number of cases, and in nione of these was the accuracy of 
the transformed results worse than the original partial sums. 

Since the odd and even order terns in the series (19) are so dissimilar, the odd 
and even terms were separated out and the two series submitted separately to 
treatment by the e-algorithm, the transformed results subsequently being added 
together. The numerical results produced in this way were not, however, signifi- 
cantly better than those shown in Table II. 

THIRD ExAMPLE: This concerns the application of the Euler-Maclaurin integra- 
tion formula 

(21) F(t) = dt = {F(x) + F(x + h) I - E h AF(2-1) (x) 2 s~~~~~~-1 (2s)! 

when the integrand is the function exp(-z2) and the upper and lower limits of 
integration are 0 and w(1 + i) respectively, with w = 0.75. 

The functions u, = hF+ (h) in this example satisfy the recursion 
(s + 1)! 

(22) s(s + 1)u. + 2h2su1_J + 2h2(s - )U8-2 = 0 

TABLE II 

-0.4337 503 
0.4722 880 -0.4701 290 
0.4700 009 0.4699 404 -0.4699 923 
0.4699 419 0.4699 732 0.4700 085 -0.4700 040 
0.4700 084 0.4700 105 0.4700 032 0.4700 027 -0.4700 034 
0.4700 105 0.4700 088 0.4700 027 -0.4700 031 
0.4700 020 0.4700 017 0.4700 040 
0.4700 017 -0.4700 019 

-0.4700 048 
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with 

uO= -wtcos(2w2) + sin(2w2)I - iwucos(2w2) - sin(2w2)1 
(23) 

U, = -2w3{cos(2w2) - sin(2w2)1 + i2w3cos(2w2) + sin(2w2)}. 

The quantities {(m) (which are now complex numbers) with even order suffix 
are displayed in Table III. Since erf(0.75(l + i)) = 0.917 306 + iO.403 654, 
application of the ealgorithm has in this case resulted in the gain of about three 
decimal places. 

It is perhaps of interest to point out that the accuracy of the transformed 
results produced in the first and third examples could have been increased by ex- 
tending the computation. This is also true to a limited extent of the second example, 
but the non-existence of central differences above a certain order limits the extent 
to which the computation may be prolonged. 

It would be useful, when examining the mathematical validity of the procedures 
adopted in the second and third examples, to be able to relate the determinantal 
quotient 

1 8==0 8=1 s 
t EC8p8F E c3p8F . 2 .EC8p3F 
' 80 80 

! C, pF cp2F ... C+ pm+ F * *- X80'_ 

cm pmF C pm+lF ... Cm p mF 

1 1 1 *- I 

ci pE c2p-F ** Cm+Pl m+IF 

Cm pmF Cm+, pm F ... C2m p F 

to the solution f of the operational equation 

E c3p3F =E 
8-0 

but this appears to be olne of the cases in which a statemelnt of the problenm is not a 
great step forward to its solution. 
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